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Background 

Introduction of new three-dimensional science standards have ushered in innovative methods for 

assessing students’ knowledge of science. The new standards also posed challenges in regards to 

implementation. New psychometric models were needed to account for the fact that item-level 

scores are clustered due to a common stimulus. Rijmen, Jiang, and Turhan (2018) proposed use 

of a generalized Rasch testlet model for item clusters that assess the new science standards. This 

testlet model accounts for local item dependencies by including nuisance dimensions and also 

allows for items that do not belong to a cluster. In recent technical reports, AIR documented 

unusually long item calibration times – weeks in the case of grade 8 – due to the estimation of 

cluster variances. AIR psychometricians addressed this issue by using an internally developed 

item calibration program (in MATLAB) to reduce run times. In addition, they proposed a 

marginal maximum likelihood estimator for proficiency, marginalizing out nuisance dimensions. 

This estimator is not available in any commercial IRT software. AIR conducted a simulation 

study to demonstrate the performance of the marginal maximum likelihood estimator (M-MLE) 

under various conditions. Their findings were that the M-MLE proficiency estimator was less 

biased than other estimators and would be used to estimate science student proficiency scores.  

As most of the software AIR used for science item calibration and scoring was developed in-

house, state level data quality control checks will be met with logistical challenges. In light of 

this, the Connecticut State Department of Education (CSDE) conducted a series of studies to 

validate AIR’s calibration and scoring processes.  

The purpose of this paper is to describe our validation process, summarize results, and provide 

recommendations for future science assessment administrations. 

Validating the Item Calibration Process 

AIR provided CSDE with item parameters based on two samples: multi-state data and 

Connecticut only data. Parameters were estimated using AIR’s program written in MATLAB. 

All item calibrations at CSDE were based on Connecticut data using a marginal maximum 

likelihood procedure in the flexMIRT software. CSDE compared our item calibration results to 

the two datasets provided by AIR (multi-state calibration and Connecticut only calibration). 

Overall, differences in item parameter estimates were negligible.  
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Table 1 of the Appendix shows counts and percentages of differences in item difficulties for 

specified intervals. 

Validating the M-MLE Estimator 

AIR recently published a web-based scoring tool, METRICS, for public use. METRICS uses R 

routines to compute student proficiency scores. We tested the software by scoring the 2018 field 

test data and compared the results to those provided by AIR. CSDE was able to match AIR’s 

scores and standard errors exactly, giving us confidence that participating states can use 

METRICS during data quality control efforts. 

Members of CSDE’s Research team independently developed a Fortran 90 computer program 

(Rogers & Swaminathan, 2019) for computing the M-MLE proficiency estimator proposed by 

AIR. The program was validated by generating 1P testlet data for a sample of 4100 students, 

with 100 students at each of 41 theta levels between -4 and 4 in increments of 0.2. The simulated 

response data were scored using both the Fortran M-MLE estimator and AIR’s METRICS. 

Figure 1 shows the relationship between proficiency scores obtained by Rogers and 

Swaminathan’s Fortran M-MLE and AIR’s M-MLE. The estimates from the Fortran program 

agreed exactly with those of AIR except at the extremes. This is due to differences between 

methods used for handling zero and perfect scores. In sum, Rogers and Swaminathan’s Fortran 

M-MLE program produces the same proficiency scores as AIR’s METRICS tool and is 

appropriate for use in a simulation study comparing proficiency score estimators.  

Simulation Studies 

CSDE conducted two simulation studies using the same design as that of Rijmen, Jiang, and 

Turhan (2018). The design was extended by using a wider range of proficiency values and 

adding other estimators for comparison. Study 1 assessed the proficiency recovery for six 

different proficiency estimators under 12 conditions. Study 2 used a single condition based on a 

more realistic test design.  

 

Simulation Study I 

The test design consisted of 40 binary assertions – 28 assertions clustered in sets of 4 and 12 

standalones. Rijmen, Jiang, and Turhan (2018) explained that four assertions per cluster were 
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chosen to evaluate model parameter and proficiency recovery as they expected that this number 

would pose a challenge for recovery of cluster variances. As in their study, we varied the size of 

the testlet effect for nuisance dimensions: small (0.25), medium (0.50), large (0.75), and very 

large (1.00). The variance for the general science dimension was set to one (1) for all conditions. 

Mean test difficulty was varied as well. There were three conditions: low (-0.5), medium (0.0), 

and high (0.5) difficulty. This resulted in 12 study conditions.  

All data were generated under a 1P testlet model. A sample of 10,000 responses was generated 

under each study condition and calibrated using 3 different IRT models: unidimensional one- 

(Rasch) and two-parameter logistic IRT models and the Rasch testlet model. All models were 

calibrated with flexMIRT using a marginal maximum likelihood procedure. After item 

calibration, 5000 responses were generated for each of 41 true proficiency values ranging from  -

4 to 4 in increments of 0.2. Item parameters obtained during calibration were used to estimate 

proficiency. For all conditions, response data were scored using six different proficiency 

estimators in order to assess the bias and accuracy of recovered proficiency estimates:  

 Unidimensional IRT Model Proficiency Estimators (FlexMIRT)_ 

o 1P Expected A Posteriori (EAP) 

o 2P EAP  

 Multidimensional IRT Model Proficiency Estimators 

o Joint Maximum A Posteriori (J-MAP) (FlexMIRT) 

 General and nuisance dimension proficiencies estimated jointly 

 Normal (0,1) prior placed on the general science dimension  

o Marginal Expected A Posteriori (M-EAP) 

 Marginalizes nuisances dimensions before for computing an EAP estimate 

for general science dimension 

 Normal (0,3) prior placed on the general science dimension  

o Marginal Maximum A Posteriori (M-MAP) 

 Marginalizes nuisances dimensions before computing Bayesian modal 

proficiency estimate for general science dimension 

 Normal (0,3) prior placed on the general science dimension 

o Marginal Maximum Likelihood Estimation (M-MLE)  



 

Validating American Institutes for Research’s Calibration and Scoring Processes for Science Assessments 

Connecticut State Department of Education, June 2019 

Page 6 of 13 
 

 Marginalizes nuisances dimension before computing maximum likelihood 

proficiency estimate for general science dimension 

 No priors placed on the general science dimension  

For each estimator, the bias in the estimates was calculated under each condition for 5000 

replications at each of the 41 trait values. Bias is defined as the average difference between 

estimated values and true values. The M-MLE estimator demonstrated the least amount of bias in 

estimating proficiency followed by M-MAP and M-EAP under all 12 study conditions. The 

marginal MAP and EAP estimators overestimated true proficiency at the lower end and 

underestimated true proficiency at the higher end of the proficiency distribution. However, the 

unidimensional 1P EAP and 2P EAP demonstrated the greatest amount of bias under all 

conditions. As in the case of M-MAP and M-EAP, true proficiency was consistently 

overestimated at the lower end and underestimated at the higher end of the proficiency 

distribution, but to a much greater extent than the M-MAP and M-EAP estimators. Refer to 

Figures 2 – 5 for bias plots. Plots are for medium (0.0) test difficulty at each level of cluster 

variance. Plots for easy and hard test conditions are available upon request.  

In addition to bias, the root mean squared error (RMSE) was calculated under each condition to 

assess the accuracy of proficiency estimates. RMSE is the square root of the average squared 

difference between the estimate and the true value and may be interpreted as the average amount 

of error in the estimates. A low RMSE value is preferred. Except at the extremes of the 

proficiency distribution, the M-MLE estimator was consistently the least accurate estimator of 

proficiency under all study conditions. The unidimensional 1P EAP and J-MAP estimators were 

most accurate in the average proficiency range when the testlet effect is lowest (0.25) (i.e., the 

data are close to unidimensional). However, as the testlet effect increases, the accuracy of these 

estimators begins to decrease. Refer to Figures 6 - 9 for accuracy plots. Plots are for medium 

(0.0) test difficulty at each level of cluster variance. Plots for easy and hard test conditions are 

available upon request. 

 

Simulation Study II 

As in Rijmen, Jiang, and Turhan’s (2018) study, the test design for the second simulation study 

consisted of 53 binary assertions. The number of assertions per clusters were varied from 4 to 11 
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for a total 41 assertions across 6 clusters. The number of standalones was twelve. Cluster 

variance for the second study was varied from 0.31 to 2.06. These conditions were based on 

observations from the 2018 field test placing the cluster variances in for the second study closer 

to actual test design. Results for Study II were very similar to those of Study 1. Once again, the 

M-MLE estimator was the least biased across the proficiency continuum but was less accurate 

than the estimators that employed a prior distribution. Refer to Figures 10 and 11 for bias and 

accuracy plots. 

Recommendations  

This study examined item calibration and proficiency recovery across select proficiency 

estimators for data of the type collected during the science assessment. Results of this study 

provide support for AIR’s findings that use of a testlet model and the M-MLE estimator is 

optimal for minimizing bias in proficiency estimates. However, the M-MLE estimator does not 

provide the most accurate proficiency estimates. In choosing a proficiency estimator, there is a 

tradeoff: reduce bias in estimates or increase accuracy. The answer to this issue depends on how 

test results will be used. Wang and Vispoel (1998) list three conditions where minimizing bias is 

most important: (1) comparing group means, (2) comparing proficiency estimates based on 

different tests, and (3) score classification. The authors explain that bias could cause systematic 

shifts in group means, individual proficiency estimates, and classification cut points, particularly 

in the case of extreme proficiency scores. Given that the science assessments are used to obtain 

scores at the group level and classify scores into proficiency levels, minimally biased proficiency 

estimates are preferable. 
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Appendix A: Tables and Figures 

Table 1. Differences in assertion difficulties between CT Calibration and AIR Calibration: 

Counts and percentages of assertions 

 Grade 5, n=660 Grade 8, n=1036 Grade 11, n=854 

Difference in 

Assertion Difficulties  

(on theta scale) 

Differences 

between 

CT 

Calibration 

of CT Data 

and AIR 

Calibration 

of All 

States Data 

Differences 

between CT 

Calibration 

of CT Data 

and AIR 

Calibration 

of CT Only 

Data 

Differences 

between CT 

Calibration 

of CT Data 

and AIR 

Calibration 

of All States 

Data 

Differences 

between CT 

Calibration 

of CT Data 

and AIR 

Calibration 

of CT Only 

Data 

Differences 

between CT 

Calibration 

of CT Data 

and AIR 

Calibration 

of All States 

Data 

Differences 

between CT 

Calibration 

of CT Data 

and AIR 

Calibration 

of CT Only 

Data 

<-0.3 16 (2%) 7 (1%) 34 (3%) 3 (0%) 32 (4%) 7 (1%) 

from -0.3 to -0.21 23 (3%) 3 (0%) 57 (6%) 7 (1%) 70 (8%) 8 (1%) 

from -0.22 to -0.11 81 (12%) 32 (5%) 157 (15%) 49 (5%) 141 (17%) 18 (2%) 

from -0.1 to 0.1 420 (64%) 544 (82%) 561 (54%) 891 (86%) 512 (60%) 679 (80%) 

from 0.11 to 0.2 87 (13%) 55 (8%) 150 (14%) 69 (7%) 67 (8%) 114 (13%) 

from 0.21 to 0.3 21 (3%) 13 (2%) 44 (4%) 16 (2%) 13 (2%) 24 (3%) 

>0.3 11 (2%) 6 (1%) 33 (3%) 1 (0%) 19 (2%) 4 (0%) 

 

Figure 1. Scatter plot of proficiency scores obtained by Rogers and Swaminathan’s (Fortran) M-

MLE versus AIR’s M-MLE. 
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Figure 2. Bias plots for each proficiency estimator under small (0.25) cluster variance. 

 

 

Figure 3. Bias plots for each proficiency estimator with medium (0.50) cluster variance. 
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Figure 4. Bias plots for each proficiency estimator with large (0.75) cluster variance. 

 

Figure 5. Bias plots for each proficiency estimator with very large (1.00) cluster variance. 
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Figure 6. Accuracy (RMSE) plots for each proficiency estimator with small (0.25) cluster 

variance. 

 

Figure 7. RMSE plots for each proficiency estimator with medium (0.50) cluster variance. 
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Figure 8. Accuracy (RMSE) plots for each proficiency estimator with large (0.75) cluster 

variance. 

 

Figure 9. RMSE plots for each proficiency estimator with very large (1.00) cluster variance. 
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Figure 10. Bias plots for each proficiency estimator with increased number of assertions and 

differing cluster variances. 

 

Figure 11. RMSE for each proficiency estimator with increased number of assertions and 

differing cluster variances. 
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